In the absence of SseF, the vacuolar compartments containing Salm

In the absence of SseF, the vacuolar compartments containing Salmonella were discontinuous and intracellular Salmonella replication was reduced [10, 14, 15, 20–22]. SseG was shown to be co-localized with the trans-Golgi network and only bacteria closely associated with the Golgi network were able to multiply [11]. It has been shown that SseF interacts functionally and physically with SseG but not SifA and is also required for the perinuclear Selleck Depsipeptide localization of Salmonella vacuoles [23]. The molecular mechanism on how SseF and SseG function remains unknown. In the present study, we set out to EGFR inhibitor search the host target that interacts with SseF. We presented evidence indicating that Salmonella SseF interacts

with TIP60 to potentiate its histone acetylation activity to promote intracellular replication. Methods Bacterial strains Bacterial strains and plasmids used in this study are listed in Table 1. Chromosomal gene replacements were carried out by using a suicide plasmid [24, 25]. E. coli and Selleck LY2606368 S. typhimurium strains are routinely cultured in Luria-Bertani broth (LB). Salmonella trains were grown in MgM minimal medium when SPI-2 TTSS-inducing conditions were desired [26]. Antibiotics used were: ampicillin at 120 μg/ml, streptomycin

at 25 μg/ml, and tetracycline at 12 μg/ml. Table 1 Bacterial strains and plasmids Strains and plasmids Relevant Characteristics Source S. typhimurium and E. coli SL1344 Wild-type S. typhimurium, Strr [33] ZF3 SseF in-frame deletions This study SM10 λpir thi thr leu tonA lacY supE recA::RP4-2-Tc::Mu (Kanr) λpir [34] Plasmids pZP226 SsaV in-frame deletions in pSB890; Tcr [20] pZP227 SseF in-frame deletions in pSB890; Tcr [20] pZP784 SseFΔ67-106, 161-174, 186-205 in pGBT9, Apr This study pZP2037 His-SseF in pET28a; Kanr This study pZP2038 His-SseG in pET28a; Kanr This study pZF1 GAL4AD-iTIP60164-546 in pGAD-GH; Apr This study pZF2 GAL4AD-TIP60α in pGAD-GH; Apr This study pZF3 GAL4AD-TIP60β in pGAD-GH; Apr This study pZF4 HA-TIP60α in pcDNA3; Apr This study pZF6 MBP-TIP60α in pIADL16; Apr This study pZF8 GAL4-BD-SseF1-66 in pGBT9; Apr

This study pZF9 GAL4-BD-SseF50-66 in pGBT9; Apr This study pZF10 GST-SseF1-66 L-gulonolactone oxidase in pGEX-KG; Apr This study pZF11 GST-SseF50-66 in pGEX-KG; Apr This study pZF280 GAL4-BD-SseF1-56 in pGBT9; Apr This study pZF281 GAL4-BD-SseF50-260 in pGBT9; Apr This study pZF282 GAL4-BD-SseF1-228 in pGBT9; Apr This study Mammalian cell lines and bacterial infection assay The murine macrophage RAW264.7 (TIB-71, ATCC) and the human epithelial cell line HeLa (CCL-2, ATCC) were from the ATCC (Manassas, VA) and were maintained in Dulbecco’s modified Eagle medium (DMEM) containing 10% FBS. Bacterial infection of RAW264.7 and survival assays were carried out using opsonized bacteria in DMEM containing 10% normal mouse serum as described before [10, 20, 27].

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>