Via feedback, newborn progeny can regulate the behavior of neural precursors. In both adult SVZ and SGZ, quiescent radial glia-like cells are rapidly activated to support continuous neurogenesis after eliminating rapidly proliferating progeny with AraC treatment (Doetsch et al., 1999 and Seri et al., 2001). In the adult SVZ, neuroblasts release GABA, leading
to tonic GABAAR activation of neural precursors MEK inhibitor and a decrease in proliferation (Liu et al., 2005). Mature neurons also serve as a niche component critical for activity-dependent regulation of adult neurogenesis through different neurotransmitter systems. In the adult SGZ, local interneurons release GABA, which in turn regulates cell proliferation as well as maturation, dendritic development, and synaptic integration of newborn neurons (Ge http://www.selleckchem.com/screening/fda-approved-drug-library.html et al., 2006 and Tozuka et al., 2005).
On the other hand, glutamate regulates survival of newborn neurons in the adult SGZ through an NMDAR-dependent mechanism (Tashiro et al., 2006). The adult neurogenic niche also appears to exhibit significant cellular plasticity to maintain integrity under adverse conditions. For example, after severe damage to the ependymal ventricular wall with postnatal Numb/numb-like deletion residual neural progenitors appear to contribute to the repair and remodeling of the SVZ niche (Kuo et al., 2006). While neurogenic niches for hippocampal and olfactory bulb neurogenesis exhibit many similarities, there are clearly differences. The whole process of hippocampal neurogenesis is physically localized to dentate gyrus. In addition, the SGZ is enriched with different nerve terminals and subjected to dynamic circuit activity-dependent regulation through different neurotransmitters. In contrast, the
SVZ does not reside within a dense neuronal network and is physically segregated from the olfactory bulb where Pramipexole integration of new neurons occurs. Future studies are needed to identify cellular and molecular mechanisms by which individual niche components control developmental decisions made at distinct stages of adult neurogenesis. Adult neural precursors also appear to be arranged in a highly organized fashion across the tissue, such as the pinwheel architecture in the adult SVZ (Mirzadeh et al., 2008). How are the “unitary” niche structure and arrangement of each unit established during development? Do different “units” interact with each other for homeostatic tuning of adult neurogenesis? The heterogeneity of adult neurogenesis in subdomains of the SVZ, and potentially also in the SGZ, also raises the question of region-specific organization of the niche. As the niche is a highly dynamic center for complex biochemical signaling and cellular interaction, future studies are needed to address how different niche components and signaling mechanisms interact to orchestrate the complex and precise development of adult neural precursors under different conditions.