Evidence suggests that cholinergic-independent pathways over a wide range are also targeted, including serine proteases. These proteases comprise nearly one-third of all known proteases and play major roles in synaptic plasticity, learning, memory, neuroprotection, wound healing, cell signaling, inflammation, PS-341 nmr blood coagulation, and protein processing. Inhibition of these proteases by OP was found to exert a wide range of noncholinergic effects depending on the type of OP, the dose, and the duration of exposure. Consequently, in order to understand these differences, in silico biologically based dose-response
and quantitative structure-activity relationship (QSAR) methodologies need to be integrated. Here, QSAR were used to predict OP bimolecular rate constants for trypsin and -chymotrypsin. A heuristic regression of over 500 topological/constitutional, geometric, thermodynamic, electrostatic, and quantum mechanical descriptors, using the software Ampac 8.0 and Codessa 2.51 (SemiChem, Inc., Shawnee, KS), was developed to obtain statistically verified equations for the models. General models, using all data subsets, resulted in R2 values of .94 and KU-60019 in vivo .92 and leave-one-out Q2 values of 0.9 and 0.87 for trypsin and -chymotrypsin. To validate the general model, training sets
were split into independent subsets for test set evaluation. A y-randomization procedure, used to estimate chance correlation, was performed 10,000 times, resulting
in mean R2 values of .24 and .3 for trypsin and -chymotrypsin. The results show that these models are highly predictive and capable of delineating the complex mechanism of action between OP and serine proteases, and ultimately, by applying this approach to other OP enzyme reactions such as AChE, facilitate the development of biologically based dose-response models.”
“BACKGROUND Chronic kidney disease (CKD) associated with type 2 diabetes is the leading cause of kidney failure, with both inflammation and oxidative stress contributing to disease progression. Bardoxolone methyl, an oral antioxidant inflammation modulator, has shown efficacy in patients with CKD and type 2 diabetes in short-term studies, but longer-term Aldol condensation effects and dose response have not been determined.
METHODS
In this phase 2, double-blind, randomized, placebo-controlled trial, we assigned 227 adults with CKD (defined as an estimated glomerular filtration rate [GFR] of 20 to 45 ml per minute per 1.73 m(2) of body-surface area) in a 1: 1: 1: 1 ratio to receive placebo or bardoxolone methyl at a target dose of 25, 75, or 150 mg once daily. The primary outcome was the change from baseline in the estimated GFR with bardoxolone methyl, as compared with placebo, at 24 weeks; a secondary outcome was the change at 52 weeks.