abortus strains isolated from animals (except for a single human isolate). The results of this study show, however, that Bruce 43 is a higly variable marker with six alleles and 0.529 DI, and that it is sometimes found to have a different copy GS-9973 nmr number in the same farm (Table 1, 3). Therefore, Bruce 43 needs to serve as
a rather discriminating marker than as a species identification marker for the B. abortus strains. Bruce 30 (Hoof 2), however, was found to have five alleles and a 0.450 DI, which is slightly lower than five alleles as well as a 0.69 [30] and a 0.72 DI [27]. Hoof-3 and Bruce 04 (Hoof 6) were found to have 0.448 and 0.228 DIs, lower than the 0.83 and 0.68 DIs [27] or 0.630 and 0.535 DIs [36] previously reported. Moreover, the DI values at the other loci, except for Bruce 43, Bruce 30, Hoof-3, and Bruce 04, range from 0 to 0.022 (Table 1), which are very much lower than the 0-0.75 DIs reported in the 43 B. abortus isolates previously [27, 30]. These Dactolisib low DI values are as expected if the population of B. abortus isolates present in Korea LOXO-101 was the result localized by clonal expansion of B. abortus strain without the input of a new strain recently. To detect the changes in the MLVA profiles
for the isolates within the same farms, a total of 96 isolates from 24 farms were analyzed. Some of the B. abortus isolates that originated from seven farms were found to have two or three allelic profiles in the same farm, with a difference of one copy number for Bruce 30, Bruce 43, or Hoof-3. Particularly, two B. abortus isolates that originated from one cow in the KW04 farm appeared to have one copy number difference in Hoof-3 (Table 2). In the results of the epidemiological investigation, each of the seven farms did not seem to have mixed infections from the strains that originated from different sources. In the course of replication in the body, emission to an environmental material by abortion, resistance of any external condition, and re-infection during their existence within a stall, mutants can be generated at the genetic sites that code TRs. Whatmore et al. [27] reported, after the experimental infection of pigs
with B. suis, that the strains that were re-isolated from Adenosine triphosphate four of six infected animals showed some minor changes, an increase or decrease in one TRs copy number. They were identified to have mutation events at four loci, showing a high DI within the B. suis strains. In general, random genetic events, including the insertions, deletions, and point mutations of DNA, have been generated commonly in the course of an outbreak [38]. The Brucella species are not exceptions to these genetic events. It was reported that erythritol-tolerant mutants generated a proportion ranging from 10-4 to 10-6 in the B. abortus S19 vaccine strain [39]. Changes in the TRs copy number of each locus are possible, and there are generally different mutant rates at different genetic sites [40].