, 1994; Denk et al., 2005; Pardo
et al., 2012; Mai et al., 2012). When there was no barrier in the maze, rodents preferred the high reinforcement density arm, and neither DA receptor antagonism nor accumbens DA depletion altered their choice (Salamone et al., 1994). When the arm with the barrier contained 4 pellets, but the other arm contained no pellets, rats with accumbens DA depletions still chose the high density arm, climbed the barrier, and consumed the pellets. In a recent T-maze study with mice, while haloperidol reduced choice of the arm with the barrier, this drug had no effect on choice when both arms had a barrier in place (Pardo et al., 2012). Thus, dopaminergic BAY 73-4506 cell line manipulations did not alter the preference based upon reinforcement magnitude, and did not affect discrimination, memory or instrumental learning processes related to arm preference. Bardgett et al. (2009) developed a T-maze effort discounting task, in which
the amount of food in the high density arm of the maze was diminished each trial on which the rats selected that arm. Effort discounting was altered by administration of VE-821 purchase D1 and D2 family antagonists, which made it more likely that rats would choose the low reinforcement/low cost arm. Increasing DA transmission by administration of amphetamine blocked the effects of SCH23390 and haloperidol and also biased rats toward choosing the high reinforcement/high cost arm, which is consistent with operant choice studies using DA transporter knockdown mice (Cagniard et al., 2006). One of the important issues in this area is the
extent to which animals with impaired DA transmission are sensitive to the work Terminal deoxynucleotidyl transferase requirements in effort-related tasks, or to other factors such as time delays (e.g., Denk et al., 2005; Wanat et al., 2010). Overall, the effects of DA antagonism on delay discounting have proven to be rather mixed (Wade et al., 2000; Koffarnus et al., 2011), and Winstanley et al. (2005) reported that accumbens DA depletions did not affect delay discounting. Floresco et al. (2008) demonstrated that the DA antagonist haloperidol altered effort discounting even when they controlled for the effects of the drug on response to delays. Wakabayashi et al. (2004) found that blockade of nucleus accumbens D1 or D2 receptors did not impair performance on a progressive interval schedule, which involves waiting for longer and longer time intervals in order to receive reinforcement. Furthermore, studies with tandem schedules of reinforcement that have ratio requirements attached to time interval requirements indicate that accumbens DA depletions make animals more sensitive to added ratio requirements but do not make animals sensitive to time interval requirements from 30–120 s (Correa et al., 2002; Mingote et al., 2005).